Solar PV for businesses in the Western Cape

In the Western Cape Province, there has been an exponential increase in the installation of solar PV by the retail, commercial, industrial and agricultural business sectors. Installations are driven by supportive local government policy frameworks, above-inflation electricity price increases and decreasing technology costs. The case studies throughout this brief highlight the benefits businesses have reaped following installations in this changing environment.

This industry brief highlights:

- The financial viability of solar PV installations in the Western Cape.
- The local and national government support available to customers, including information on small scale embedded generation (SSEG) regulations for installing solar PV.
- The municipalities that allow the installation of solar PV and where electricity can be fed into the grid.

Solar PV is providing business benefits

How financially viable are solar PV installations for businesses?

The financial viability of solar PV is dependent on a number of different factors:

- **Installation size:** larger projects produce cheaper electricity as fixed costs, such as design and specification, are spread over more panels.
- **Technology choice and exchange rate:** prices still vary and some components need to be imported.
- **Location, roof type and direction:** influence the amount of sun reaching the solar panels.
- **Financing model:** depends on the client’s risk profile or financial standing.
- **Current electricity tariff:** solar PV’s viable increases as electricity tariffs increase.
- **Consumption patterns:** Eskom charges a peak charge during periods of highest use (typically, in a business context, during the day). Generating one’s own electricity (also most effective during sunny periods) results in greater savings.

Main insights

Solar PV can save businesses up to 16% in electricity costs, meaning systems can often pay for themselves within 3 - 8 years of installation.

In the Western Cape, the installed solar PV capacity as at Q2/2017 is 38MW.

Case Study

Bayside Mall

500kWp solar PV plant located in Tableview, Cape Town, installed by Sustainable Power Solutions.

Technology:
- 2000 Trina Solar modules
- 30 Danfoss FLX PRO 17 inverters (17kW 3PH)
- 3300sqm roof space

Return on Investment:
- 775MWh generated annually
- 5% reduction on electricity costs p.a.
- 8 years payback period
- 767 tonnes p.a. carbon emissions saved

Solar PV can save businesses up to 16% in electricity costs, meaning systems can often pay for themselves within 3 - 8 years of installation.

In the Western Cape, the installed solar PV capacity as at Q2/2017 is 38MW.

How financially viable are solar PV installations for businesses?

The financial viability of solar PV is dependent on a number of different factors:

- **Installation size:** larger projects produce cheaper electricity as fixed costs, such as design and specification, are spread over more panels.
- **Technology choice and exchange rate:** prices still vary and some components need to be imported.
- **Location, roof type and direction:** influence the amount of sun reaching the solar panels.
- **Financing model:** depends on the client’s risk profile or financial standing.
- **Current electricity tariff:** solar PV’s viable increases as electricity tariffs increase.
- **Consumption patterns:** Eskom charges a peak charge during periods of highest use (typically, in a business context, during the day). Generating one’s own electricity (also most effective during sunny periods) results in greater savings.

Main insights

Solar PV can save businesses up to 16% in electricity costs, meaning systems can often pay for themselves within 3 - 8 years of installation.

In the Western Cape, the installed solar PV capacity as at Q2/2017 is 38MW.
In a modelling exercise performed by GreenCape based on actual industry costs, an approximate payback period of five years is achieved for a 100kWp system (see figure 1).

As solar PV systems have an average lifespan of 20-25 years, this can mean 15-20 years of free energy.

The Western Cape government aims to increase the contribution of rooftop PV to the Western Cape electricity supply to 135MW by 2020.

Case Study Old Mutual

1MW solar PV plant located in Pinelands, Cape Town, installed by SOLA Future Energy.

Technology:
3600 Jinko Solar poly-crystalline modules
20 ABB TRIO 50.0 Inverters (50kW 3PH)
Carport/surface area of 7000sqm

Return on Investment:
1.9MWh generated annually
5% reduction on electricity costs p.a.
6 years payback period
2125 tonnes p.a carbon emissions saved

kWp vs kWh
KiloWatt Peak (kWp) measures the most power the system can produce, i.e. the size of the system.
Kilo Watt Hour (kWh) measures the energy the system produces.

These systems can be paid for in two ways – either by buying the system yourself, or by signing a power purchase agreement (PPA) with a PPA provider. The PPAs generally have no capital costs, just a per kWh energy cost (see next section for more on financing options).

What are the returns on solar PV systems?

In a modelling exercise performed by GreenCape based on actual industry costs, an approximate payback period of five years is achieved for a 100kWp system (see figure 1).

As solar PV systems have an average lifespan of 20-25 years, this can mean 15-20 years of free energy.

What do solar PV systems cost?

<table>
<thead>
<tr>
<th>System size</th>
<th>Capital cost of system (cost per kWp)</th>
<th>Power purchase agreement tariff (price per kWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 100 kWp</td>
<td>R 13 500 - R16 000</td>
<td>R 1.20 - R1.45</td>
</tr>
<tr>
<td>> 100kWp and <500 kWp</td>
<td>R 11 500 - R14 000</td>
<td>R 1.05 - R1.25</td>
</tr>
<tr>
<td>> 500 kWp</td>
<td>R 10 500 - R13 000</td>
<td>R 0.90 - R1.15</td>
</tr>
</tbody>
</table>

Our modelling also shows that the economies of scale are significant with larger systems currently being more financially viable. The table above shows that small systems (< 100 kWp) cost ~R15k per kWp compared to large systems (> 500 kWp) that cost up to R13k per kWp. This is highlighted by the national snapshot of solar PV and is also reflected in the PPA tariffs with decreasing tariffs as system size increases.
Which municipalities allow small scale embedded generation in the Western Cape?

<table>
<thead>
<tr>
<th>Municipality</th>
<th>SSEG tariffs</th>
<th>SSEG policies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beaufort West</td>
<td>Yes</td>
<td>Council resolution</td>
</tr>
<tr>
<td>Bergrivier</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>City of Cape Town</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Drakenstein</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>George</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Mossel Bay</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Oudshoorn</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Overstrand</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Stellenbosch</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Swartland</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Theewaterskloof</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Langeberg</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Breede Valley</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Saldana Bay</td>
<td>In progress</td>
<td>Yes</td>
</tr>
<tr>
<td>Witzenberg</td>
<td>In progress</td>
<td>Interim policy</td>
</tr>
<tr>
<td>Prince Albert</td>
<td>Council resolution</td>
<td>Council resolution</td>
</tr>
<tr>
<td>Laingsburg</td>
<td>Council resolution</td>
<td>Council resolution</td>
</tr>
<tr>
<td>Cederberg</td>
<td>Yes</td>
<td>In progress</td>
</tr>
<tr>
<td>Cape Agulhas</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Please contact your local municipality electricity department for more info.

How to finance solar PV

There are three financing options available in South Africa:

- **Self-funded**
 - Client purchases 100% of the solar PV system using available funding. (See capital costs in table on pg.2).
 - All tax benefits and incentives apply (See ‘Solar PV incentives’, pg.4).

- **Bank-funded**
 - Financing institutions are increasingly able to provide patient and more affordable finance packages for solar PV.
 - Bank provides a term loan covering 70-100% of capital costs with a five- to ten-year loan.
 - Projects designed so that solar installation savings are more than the loan repayments for a zero cash flow impact.
 - All tax benefits and incentives apply (see ‘Solar PV incentives’, pg.4).

- **Power purchase agreements and rooftop rental**
 - Power purchase agreements are long-term contracts between developers and PV system buyers, for the buyer to purchase electricity at a predetermined rate.
 - There are zero upfront costs and developer absorbs the cost proposal, design, construction, operation, and maintenance of the system.
 - PPAs are a hedge against future electricity costs; they protect customers against uncertain Eskom electricity hikes. Roof must be leased for the solar PV system’s life span.

The development of online platforms for peer to peer lending and the use of the block chain are important developments to keep an eye on in this market.

Figure 2: Municipalities that allow small scale embedded generation

While every attempt was made to ensure that the information published in this brief is accurate, no responsibility is accepted for any loss or damage that may arise out of the reliance of any person or entity upon any of the information this brief contains. Copyright © GreenCape 2017

Solar PV incentives

Feed-in tariffs
Customers are ‘paid’ for any electricity they feed onto the grid, through reductions in their energy bills.

Tax benefit (12b) applies
100% accelerated depreciation in the first financial year. In effect, it equates to a 28% discount on the price of the solar system.

Tax benefit (12i) applies
Tax allowance incentive designed to support greenfield and brownfield investments through support for both capital investment and training.

Case Study

EuroChoc/HQ Foods

326kWp solar PV plant located in Lansdowne, Cape Town, installed by Emergent Energy.

Technology:
- 816 Canadian solar modules
- 11 Schneider Electric CL2S (25kW 3-PH)
- Roof space of 4000sqm

Return on Investment:
- 640MWh generated annually
- 15% reduction on electricity costs p.a.
- 4 years payback period

Case Study

Graham Beck Wine Estate

312kWp Solar PV plant located in Robertson, Western Cape, installed by Solareff.

Technology:
- 1200 Canadian Solar panels
- 6 Delta RPI 50 Inverters (50kW 3-PH)
- Roof space of 2384sqm

Return on Investment:
- Annual generation of 470MWh
- 16% reduction on electricity costs p.a.
- Carbon emission savings of 474 tonnes p.a.

Authors: Jack-Vincent Radmore and Seraj Chilwan

www.greencape.co.za / info@greencape.co.za / (021) 811 0250